|
EGXPhys
|
Functions | |
| template<typename T > | |
| T | EGXMath::Gaussian (const T &x, const T &mu, const T &sigma) |
| Gaussian function. The probability desnisty function of a normal distribution. \[ Gaussian(x)=\frac{1}{\sigma \sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}} \] . More... | |
| template<typename T > | |
| T | EGXMath::NormalDistribution (const T &x, const T &mu, const T &sigma) |
| Gaussian function. The probability desnisty function of a normal distribution. \[Gaussian(x)=\frac{1}{\sigma \sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}\] . More... | |
| template<typename T > | |
| T | EGXMath::GaussianFWHM (const T &sigma) |
| Finds the full width half max (FWHM) of a gaussian/normal distribution. \[GaussianFWHM(x)=2\sqrt{2 ln 2} \sigma \] . More... | |
| template<typename T > | |
| T | EGXMath::NormalDistributionFWHM (const T &sigma) |
| Finds the full width half max (FWHM) of a gaussian/normal distribution. \[GaussianFWHM(x)=2\sqrt{2 ln 2} \sigma \] . More... | |
| T EGXMath::Gaussian | ( | const T & | x, |
| const T & | mu, | ||
| const T & | sigma | ||
| ) |
Gaussian function. The probability desnisty function of a normal distribution.
\[ Gaussian(x)=\frac{1}{\sigma \sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}} \]
.
See http://mathworld.wolfram.com/GaussianFunction.html and http://mathworld.wolfram.com/NormalDistribution.html
| x | \(x\ (dimensionless)\) is the argument of the function. |
| mu | \(\mu\ (dimensionless)\) is the mean of the gaussian/normal distribution. |
| sigma | \(\sigma\ (dimensionless)\) is the standard deviation of the gaussian/normal distribution. |
| T EGXMath::GaussianFWHM | ( | const T & | sigma | ) |
Finds the full width half max (FWHM) of a gaussian/normal distribution.
\[GaussianFWHM(x)=2\sqrt{2 ln 2} \sigma \]
.
See http://mathworld.wolfram.com/GaussianFunction.html and http://mathworld.wolfram.com/NormalDistribution.html
| sigma | \(\sigma\ (dimensionless)\) is the standard deviation of the gaussian/normal distribution. |
| T EGXMath::NormalDistribution | ( | const T & | x, |
| const T & | mu, | ||
| const T & | sigma | ||
| ) |
Gaussian function. The probability desnisty function of a normal distribution.
\[Gaussian(x)=\frac{1}{\sigma \sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}\]
.
See http://mathworld.wolfram.com/GaussianFunction.html and http://mathworld.wolfram.com/NormalDistribution.html
| x | \(x\ (dimensionless)\) is the argument of the function. |
| mu | \(\mu\ (dimensionless)\) is the mean of the gaussian/normal distribution. |
| sigma | \(\sigma\ (dimensionless)\) is the standard deviation of the gaussian/normal distribution. |
| T EGXMath::NormalDistributionFWHM | ( | const T & | sigma | ) |
Finds the full width half max (FWHM) of a gaussian/normal distribution.
\[GaussianFWHM(x)=2\sqrt{2 ln 2} \sigma \]
.
See http://mathworld.wolfram.com/GaussianFunction.html and http://mathworld.wolfram.com/NormalDistribution.html
| sigma | \(\sigma\ (dimensionless)\) is the standard deviation of the gaussian/normal distribution. |