EGXPhys
Semi-Empirical Mass Formula

Functions

template<typename T >
double EGXPhys::SemiEmpericalBindingEnergyKrane (const T &atomicNumber, const T &massNumber)
 Calculates the binding energy, \(BE_{SEMF}\), used in the semi-emperical mass formula for determining the mass of a nucleus using Krane's method. More...
 
template<typename T >
double EGXPhys::SemiEmpericalMassFormula (const T &atomicNumber, const T &massNumber)
 

Detailed Description

Todo:
Add reference to Decay Width.

Approximate the mass, \(m_{SEMF}\), of a nucleus.

Function Documentation

◆ SemiEmpericalBindingEnergyKrane()

template<typename T >
double EGXPhys::SemiEmpericalBindingEnergyKrane ( const T &  atomicNumber,
const T &  massNumber 
)

Calculates the binding energy, \(BE_{SEMF}\), used in the semi-emperical mass formula for determining the mass of a nucleus using Krane's method.

The semi-emperical binding energy calculates the binding energy formula.

\[BE_{SEMF} = a_V A - a_S A^{2/3}-a_C Z(Z-1)A^{-1/3}-a_{sym}\frac{(A-2Z)^2}{A}+\delta(Z,A)\]

Where \(\delta(Z,A)\):

\[\delta(Z,A)=\begin{cases} a_pA^{-3/4} & \text{ if } Z,N\text{ even }\\ 0 & \text{ if } A \text{ odd }\\ -a_pA^{-3/4} & \text{ if } Z,N \text{ odd } \end{cases}\]

Constants used:

\[a_V = 15.5\ MeV\]

\[a_S = 16.8\ MeV\]

\[a_C = 0.72\ MeV\]

\[a_{sym} = 23.0\ MeV\]

\[a_p = 34.0\ MeV\]

Equation taken from "Introductory Nuclear Physics" (Krane, 1987), p. 68

Parameters
atomicNumber\(Z\ (1)\) Atomic number. The number of protons in the nucleus of an atom.
massNumber\(A\ (1)\) Mass number. The number of protons and neutrons in the nucleus of an atom.
Returns
\(B_{SEMF}\ (MeV)\) Binding Energy.
See also
MassDefectInMeVPercSquared() to calculate mass defect, \(\Delta m\) in megaelectron volts per c squared.