|
EGXPhys
|
Functions | |
| template<typename T > | |
| T | EGXPhys::PlancksLaw (const T wavelengthInm, const T surfaceTempretureInK) |
| Calculates the spectral radiance, \(B_{\lambda}\), in watts per steradian meter cubed of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific wavelength, \(\lambda\), for a unit surface area of the black body. \[ B_{\lambda} = \dfrac{2 h c^2}{\lambda^5} \dfrac{1}{e^{\frac{hc}{\lambda k_B T}} - 1} \] . More... | |
| template<typename T > | |
| T | EGXPhys::PlancksLawFromFrequency (const T frequencyInHz, const T surfaceTempretureInK) |
| Calculates the spectral radiance, \(B_{\nu}\), in watts per steradian meter squared hertz of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific frequency, \(\nu\), for a unit surface area of the black body. \[ B_{\nu} = \dfrac{2 h \nu^3}{c^2} \dfrac{1}{e^{\frac{h\nu}{k_B T}} - 1} \] . More... | |
| template<typename T > | |
| T | EGXPhys::PlancksLawFromWavelength (const T wavelengthInm, const T surfaceTempretureInK) |
| Calculates the spectral radiance, \(B_{\lambda}\), in watts per steradian meter cubed of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific wavelength, \(\lambda\), for a unit surface area of the black body. \[ B_{\lambda} = \dfrac{2 h c^2}{\lambda^5} \dfrac{1}{e^{\frac{hc}{\lambda k_B T}} - 1} \] . More... | |
| template<typename T > | |
| T | EGXPhys::PlancksLawFromWavenumber (const T wavenumberInInversem, const T surfaceTempretureInK) |
| Calculates the spectral radiance, \(B_{\tilde {\nu }}\), in watts per steradian meter cubed of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific wavenumber, \(\tilde {\nu }\), for a unit surface area of the black body. \[ B_{\tilde {\nu }} = 2 h c^2 \tilde {\nu }^3 \dfrac{1}{e^{\frac{hc \tilde {\nu }}{k_B T}} - 1} \] . More... | |
| template<typename T > | |
| T | EGXPhys::PlancksLawFromAngularFrequency (const T angularFrequencyInRadiansPers, const T surfaceTempretureInK) |
| Calculates the spectral radiance, \(B_{\omega}\), in watt radians per steradian meter squared hertz of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific angular frequency, \(\omega\), for a unit surface area of the black body. \[ B_{\omega} = \dfrac{\hbar \omega^3}{4\pi^3c^2} \dfrac{1}{e^{\frac{\hbar\omega}{k_B T}} - 1} \] . More... | |
| template<typename T > | |
| T | EGXPhys::PlancksLawFromAngularWavelength (const T angularWavelengthInm, const T surfaceTempretureInK) |
| Calculates the spectral radiance, \(B_{y}\), in watts per steradian meter cubed of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific angular wavelength, /f$y/f$, for a unit surface area of the black body. \[ B_{y} = \dfrac{\hbar c^2}{4\pi^3y^5} \dfrac{1}{e^{\frac{\hbar c}{y k_B T}} - 1} \] . More... | |
| template<typename T > | |
| T | EGXPhys::PlancksLawFromAngularWavenumber (const T angularWavenumberInRadianPerm, const T surfaceTempretureInK) |
| Calculates the spectral radiance, \(B_{k}\), in watts per steradian meter of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific angular wavenumber, \(k\), for a unit surface area of the black body. \[ B_{k} = \dfrac{\hbar c^2 k^3}{4\pi^3} \dfrac{1}{e^{\frac{\hbar c k}{k_B T}} - 1} \] . More... | |
| T EGXPhys::PlancksLaw | ( | const T | wavelengthInm, |
| const T | surfaceTempretureInK | ||
| ) |
Calculates the spectral radiance, \(B_{\lambda}\), in watts per steradian meter cubed of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific wavelength, \(\lambda\), for a unit surface area of the black body.
\[ B_{\lambda} = \dfrac{2 h c^2}{\lambda^5} \dfrac{1}{e^{\frac{hc}{\lambda k_B T}} - 1} \]
.
See https://en.wikipedia.org/wiki/Planck%27s_law
| surfaceTempretureInK | \(T\ (K)\) Surface tempreture of the black body in kelvin. |
| wavelengthInm | \(\lambda\ (m)\) Wavelength at which to find spectral radiance at in meters. |
| T EGXPhys::PlancksLawFromAngularFrequency | ( | const T | angularFrequencyInRadiansPers, |
| const T | surfaceTempretureInK | ||
| ) |
Calculates the spectral radiance, \(B_{\omega}\), in watt radians per steradian meter squared hertz of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific angular frequency, \(\omega\), for a unit surface area of the black body.
\[ B_{\omega} = \dfrac{\hbar \omega^3}{4\pi^3c^2} \dfrac{1}{e^{\frac{\hbar\omega}{k_B T}} - 1} \]
.
See https://en.wikipedia.org/wiki/Planck%27s_law
| surfaceTempretureInK | \(T\ (K)\) Surface tempreture of the black body in kelvin. |
| angularFrequencyInRadiansPers | \(\omega\ (\frac{rad}{Hz})\) Angular frequency at which to find spectral radiance at in radians per hertz. |
| T EGXPhys::PlancksLawFromAngularWavelength | ( | const T | angularWavelengthInm, |
| const T | surfaceTempretureInK | ||
| ) |
Calculates the spectral radiance, \(B_{y}\), in watts per steradian meter cubed of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific angular wavelength, /f$y/f$, for a unit surface area of the black body.
\[ B_{y} = \dfrac{\hbar c^2}{4\pi^3y^5} \dfrac{1}{e^{\frac{\hbar c}{y k_B T}} - 1} \]
.
See https://en.wikipedia.org/wiki/Planck%27s_law
| surfaceTempretureInK | \(T\ (K)\) Surface tempreture of the black body in kelvin. |
| angularWavelengthInm | \(y\ (m)\) Angular wavelength at which to find spectral radiance at in meters. |
| T EGXPhys::PlancksLawFromAngularWavenumber | ( | const T | angularWavenumberInRadianPerm, |
| const T | surfaceTempretureInK | ||
| ) |
Calculates the spectral radiance, \(B_{k}\), in watts per steradian meter of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific angular wavenumber, \(k\), for a unit surface area of the black body.
\[ B_{k} = \dfrac{\hbar c^2 k^3}{4\pi^3} \dfrac{1}{e^{\frac{\hbar c k}{k_B T}} - 1} \]
.
See https://en.wikipedia.org/wiki/Planck%27s_law
| surfaceTempretureInK | \(T\ (K)\) Surface tempreture of the black body in kelvin. |
| angularWavenumberInRadianPerm | \(k\ (\frac{rad}{m})\) Angular wavenumber at which to find spectral radiance at in radians per meter. |
| T EGXPhys::PlancksLawFromFrequency | ( | const T | frequencyInHz, |
| const T | surfaceTempretureInK | ||
| ) |
Calculates the spectral radiance, \(B_{\nu}\), in watts per steradian meter squared hertz of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific frequency, \(\nu\), for a unit surface area of the black body.
\[ B_{\nu} = \dfrac{2 h \nu^3}{c^2} \dfrac{1}{e^{\frac{h\nu}{k_B T}} - 1} \]
.
See https://en.wikipedia.org/wiki/Planck%27s_law
| surfaceTempretureInK | \(T\ (K)\) Surface tempreture of the black body in kelvin. |
| frequencyInHz | \(\nu\ (Hz)\) Frequency at which to find spectral radiance at in hertz. |
| T EGXPhys::PlancksLawFromWavelength | ( | const T | wavelengthInm, |
| const T | surfaceTempretureInK | ||
| ) |
Calculates the spectral radiance, \(B_{\lambda}\), in watts per steradian meter cubed of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific wavelength, \(\lambda\), for a unit surface area of the black body.
\[ B_{\lambda} = \dfrac{2 h c^2}{\lambda^5} \dfrac{1}{e^{\frac{hc}{\lambda k_B T}} - 1} \]
.
See https://en.wikipedia.org/wiki/Planck%27s_law
| surfaceTempretureInK | \(T\ (K)\) Surface tempreture of the black body in kelvin. |
| wavelengthInm | \(\lambda\ (m)\) Wavelength at which to find spectral radiance at in meters. |
| T EGXPhys::PlancksLawFromWavenumber | ( | const T | wavenumberInInversem, |
| const T | surfaceTempretureInK | ||
| ) |
Calculates the spectral radiance, \(B_{\tilde {\nu }}\), in watts per steradian meter cubed of a black body from the surface tempreture, \(T\) of the black body using Plank's Law. The spectral radience is the amount of power emmited per steradian at a specific wavenumber, \(\tilde {\nu }\), for a unit surface area of the black body.
\[ B_{\tilde {\nu }} = 2 h c^2 \tilde {\nu }^3 \dfrac{1}{e^{\frac{hc \tilde {\nu }}{k_B T}} - 1} \]
.
See https://en.wikipedia.org/wiki/Planck%27s_law
| surfaceTempretureInK | \(T\ (K)\) Surface tempreture of the black body in kelvin. |
| wavenumberInInversem | \(\tilde {\nu }\ (\frac{1}{m})\) Wavemnumber at which to find spectral radiance at in inverse meters. |