|
EGXPhys
|
Functions | |
| template<typename T > | |
| T | EGXMath::Erf (const T &x) |
| Error function. The cummlitive distribution function for a guassian/normal distribution. \[ erf(x)\equiv \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}dt \] . More... | |
| template<typename T > | |
| T | EGXMath::InverseErf (const T &x) |
| Inverese error function. The inverse of the error function. \[ erf^{-1}(erf(x)) = x \] . More... | |
| template<typename T > | |
| T | EGXMath::Erfc (const T &x) |
| Complementary error function. \[ erfc(x)\equiv 1-erf(x) \] \[ erfc(x)=\frac{2}{\sqrt{\pi}}\int_x^\infty e^{-t^2}dt \] . More... | |
| template<typename T > | |
| T | EGXMath::InverseErfc (const T &x) |
| Inverse complementary error function. The inverse of the complementary error function. \[erfc^{-1}(erfc(x)) = x\] . More... | |
| T EGXMath::Erf | ( | const T & | x | ) |
Error function. The cummlitive distribution function for a guassian/normal distribution.
\[ erf(x)\equiv \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}dt \]
.
See http://mathworld.wolfram.com/Erf.html
| x | \(x\ (dimensionless)\) is the argument of the function. |
| T EGXMath::Erfc | ( | const T & | x | ) |
Complementary error function.
\[ erfc(x)\equiv 1-erf(x) \]
\[ erfc(x)=\frac{2}{\sqrt{\pi}}\int_x^\infty e^{-t^2}dt \]
.
See http://mathworld.wolfram.com/Erfc.html
| x | \(x\ (dimensionless)\) is the argument of the function. |
| T EGXMath::InverseErf | ( | const T & | x | ) |
Inverese error function. The inverse of the error function.
\[ erf^{-1}(erf(x)) = x \]
.
See http://mathworld.wolfram.com/InverseErf.html
| x | \(x\ (dimensionless)\) is the argument of the function. Ranges from -1 < x < 1. |
| T EGXMath::InverseErfc | ( | const T & | x | ) |
Inverse complementary error function. The inverse of the complementary error function.
\[erfc^{-1}(erfc(x)) = x\]
.
See http://mathworld.wolfram.com/InverseErfc.html
| x | \(x\ (dimensionless)\) is the argument of the function. Ranges from -1 < x < 1. |