|
EGXPhys
|
Functions | |
| template<typename T > | |
| T | EGXPhys::RotationalFlattening (const T eccentricity) |
| Finds the flattening (oblateness), \(f\), of a planet with eccentricity \(e\): \[ f = 1 - \sqrt{1-e^2} \] . More... | |
| template<typename T > | |
| T | EGXPhys::RotationalFlattening (const T equatorialRadius, const T polarRadius) |
| Finds the flattening (oblateness), \(f\), of a planet with equatorial radius \(a\) and polar radius, \(c\): \[ f =\begin{cases} \frac{a-c}{a}{} & oblate \\ \frac{c-a}{a} & prolate \end{cases} \] . More... | |
| template<typename T > | |
| T | EGXPhys::RotationalFlattening (const T massInkg, const T meanRadiusInm, const T angularVelocityInmPersSquared) |
| Finds the flattening (oblateness), \(f\), of a planet with mass, \(M\), mean radius, \(a\), and angular velocity of rotation, \(\Omega\). Note that this is a 1st order approximation for a planet that is rotating relatively slowly (small flattening). \[ f = \frac{5}{4} \frac{\Omega^2 a^3}{GM} \] . More... | |
| template<typename T > | |
| T | EGXPhys::RotationalOblateness (const T eccentricity) |
| Finds the oblateness (flattening), \(f\), of a planet with eccentricity \(e\): \[ f = 1 - \sqrt{1-e^2} \] . More... | |
| template<typename T > | |
| T | EGXPhys::RotationalOblateness (const T equatorialRadius, const T polarRadius) |
| Finds the oblateness (flattening), \(f\), of a planet with equatorial radius \(a\) and polar radius, \(c\): \[ f =\begin{cases} \frac{a-c}{a}{} & oblate \\ \frac{c-a}{a} & prolate \end{cases} \] . More... | |
| template<typename T > | |
| T | EGXPhys::RotationalOblateness (const T massInkg, const T meanRadiusInm, const T angularVelocityInmPersSquared) |
| Finds the oblateness (flattening), \(f\), of a planet with mass, \(M\), mean radius, \(a\), and angular velocity of rotation, \(\Omega\). Note that this is a 1st order approximation for a planet that is rotating relatively slowly (small flattening). \[ f = \frac{5}{4} \frac{\Omega^2 a^3}{GM} \] . More... | |
| T EGXPhys::RotationalFlattening | ( | const T | eccentricity | ) |
Finds the flattening (oblateness), \(f\), of a planet with eccentricity \(e\):
\[ f = 1 - \sqrt{1-e^2} \]
.
Equation taken from "Map Projections-A Working Manual" (Snyder, 1987), p. 13
See http://mathworld.wolfram.com/Flattening.html , https://en.wikipedia.org/wiki/Flattening and https://en.wikipedia.org/wiki/Equatorial_bulge
| eccentricity | \( e\ (dimensionless)\) Eccentricity of planet. |
| T EGXPhys::RotationalFlattening | ( | const T | equatorialRadius, |
| const T | polarRadius | ||
| ) |
Finds the flattening (oblateness), \(f\), of a planet with equatorial radius \(a\) and polar radius, \(c\):
\[ f =\begin{cases} \frac{a-c}{a}{} & oblate \\ \frac{c-a}{a} & prolate \end{cases} \]
.
Planet is oblate if the equatorial radius is larger than the polar radius. It is prolate if the polar radius is larger than the equatorial radius.
Equation taken from "Map Projections-A Working Manual" (Snyder, 1987), p. 13
See http://mathworld.wolfram.com/Flattening.html , https://en.wikipedia.org/wiki/Flattening and https://en.wikipedia.org/wiki/Equatorial_bulge
| equatorialRadius | \( a\ (m)\) Equatorial radius in meters. |
| polarRadius | \( c\ (m)\) Polar radius in meters. |
| T EGXPhys::RotationalFlattening | ( | const T | massInkg, |
| const T | meanRadiusInm, | ||
| const T | angularVelocityInmPersSquared | ||
| ) |
Finds the flattening (oblateness), \(f\), of a planet with mass, \(M\), mean radius, \(a\), and angular velocity of rotation, \(\Omega\). Note that this is a 1st order approximation for a planet that is rotating relatively slowly (small flattening).
\[ f = \frac{5}{4} \frac{\Omega^2 a^3}{GM} \]
.
Equation taken from http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node109.html
See http://mathworld.wolfram.com/Flattening.html , https://en.wikipedia.org/wiki/Flattening and https://en.wikipedia.org/wiki/Equatorial_bulge
| massInkg | \( M\ (kg)\) Mass of planet in kilograms. |
| meanRadiusInm | \( e\ (m)\) Mean radius of planet in meters. |
| angularVelocityInmPersSquared | \( \Omega\ (\frac{m}{s^2})\) Angular velocity of rotation of planet in meter per second squared. |
| T EGXPhys::RotationalOblateness | ( | const T | eccentricity | ) |
Finds the oblateness (flattening), \(f\), of a planet with eccentricity \(e\):
\[ f = 1 - \sqrt{1-e^2} \]
.
Equation taken from "Map Projections-A Working Manual" (Snyder, 1987), p. 13
See http://mathworld.wolfram.com/Flattening.html , https://en.wikipedia.org/wiki/Flattening and https://en.wikipedia.org/wiki/Equatorial_bulge
| eccentricity | \( e\ (dimensionless)\) Eccentricity of planet. |
| T EGXPhys::RotationalOblateness | ( | const T | equatorialRadius, |
| const T | polarRadius | ||
| ) |
Finds the oblateness (flattening), \(f\), of a planet with equatorial radius \(a\) and polar radius, \(c\):
\[ f =\begin{cases} \frac{a-c}{a}{} & oblate \\ \frac{c-a}{a} & prolate \end{cases} \]
.
Planet is oblate if the equatorial radius is larger than the polar radius. It is prolate if the polar radius is larger than the equatorial radius.
Equation taken from "Map Projections-A Working Manual" (Snyder, 1987), p. 13
See http://mathworld.wolfram.com/Flattening.html , https://en.wikipedia.org/wiki/Flattening and https://en.wikipedia.org/wiki/Equatorial_bulge
| equatorialRadius | \( a\ (m)\) Equatorial radius in meters. |
| polarRadius | \( c\ (m)\) Polar radius in meters. |
| T EGXPhys::RotationalOblateness | ( | const T | massInkg, |
| const T | meanRadiusInm, | ||
| const T | angularVelocityInmPersSquared | ||
| ) |
Finds the oblateness (flattening), \(f\), of a planet with mass, \(M\), mean radius, \(a\), and angular velocity of rotation, \(\Omega\). Note that this is a 1st order approximation for a planet that is rotating relatively slowly (small flattening).
\[ f = \frac{5}{4} \frac{\Omega^2 a^3}{GM} \]
.
Equation taken from http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node109.html
See http://mathworld.wolfram.com/Flattening.html , https://en.wikipedia.org/wiki/Flattening and https://en.wikipedia.org/wiki/Equatorial_bulge
| massInkg | \( M\ (kg)\) Mass of planet in kilograms. |
| meanRadiusInm | \( e\ (m)\) Mean radius of planet in meters. |
| angularVelocityInmPersSquared | \( \Omega\ (\frac{m}{s^2})\) Angular velocity of rotation of planet in meter per second squared. |