|
EGXPhys
|
Functions | |
| template<typename T > | |
| T | EGXMath::SpheroidFlattening (const T equatorialRadiusInm, const T polarRadiusInm) |
| Finds the flattening (oblateness), \(f\), of a spheroid with equatorial radius, \(a\), and polar radius, \(c\): \[ f =\begin{cases} \frac{a-c}{a}{} & oblate \\ \frac{c-a}{a} & prolate \end{cases} \] . More... | |
| template<typename T > | |
| T | EGXMath::SpheroidFlattening (const T eccentricity) |
| Finds the flattening (oblateness), \(f\), of a spheroid with eccentricity \(e\): \[ f = 1 - \sqrt{1-e^2} \] . More... | |
| template<typename T > | |
| T | EGXMath::SpheroidOblateness (const T equatorialRadiusInm, const T polarRadiusInm) |
| Finds the oblateness (flattening), \(f\), of a spheroid with equatorial radius, \(a\), and polar radius, \(c\): \[ f =\begin{cases} \frac{a-c}{a}{} & oblate \\ \frac{c-a}{a} & prolate \end{cases} \] . More... | |
| template<typename T > | |
| T | EGXMath::SpheroidOblateness (const T eccentricity) |
| Finds the oblateness (flattening), \(f\), of a spheroid with eccentricity \(e\): \[ f = 1 - \sqrt{1-e^2} \] . More... | |
| T EGXMath::SpheroidFlattening | ( | const T | equatorialRadiusInm, |
| const T | polarRadiusInm | ||
| ) |
Finds the flattening (oblateness), \(f\), of a spheroid with equatorial radius, \(a\), and polar radius, \(c\):
\[ f =\begin{cases} \frac{a-c}{a}{} & oblate \\ \frac{c-a}{a} & prolate \end{cases} \]
.
Spheroid is oblate if the equatorial radius is larger than the polar radius. It is prolate if the polar radius is larger than the equatorial radius.
Equation taken from "Map Projections-A Working Manual" (Snyder, 1987), p. 13
See http://mathworld.wolfram.com/Flattening.html , https://en.wikipedia.org/wiki/Flattening and https://en.wikipedia.org/wiki/Equatorial_bulge
| equatorialRadiusInm | \( a\ (m)\) Equatorial radius in meters. The degenerate semi-principle axis of the spheroid. |
| polarRadiusInm | \( c\ (m)\) Polar radius in meters. The unique semi-principle axis of the spheroid. |
| T EGXMath::SpheroidFlattening | ( | const T | eccentricity | ) |
Finds the flattening (oblateness), \(f\), of a spheroid with eccentricity \(e\):
\[ f = 1 - \sqrt{1-e^2} \]
.
Equation taken from "Map Projections-A Working Manual" (Snyder, 1987), p. 13
See http://mathworld.wolfram.com/Flattening.html , https://en.wikipedia.org/wiki/Flattening and https://en.wikipedia.org/wiki/Equatorial_bulge
| eccentricity | \( e\ (dimensionless)\) Eccentricity of spheroid. |
| T EGXMath::SpheroidOblateness | ( | const T | equatorialRadiusInm, |
| const T | polarRadiusInm | ||
| ) |
Finds the oblateness (flattening), \(f\), of a spheroid with equatorial radius, \(a\), and polar radius, \(c\):
\[ f =\begin{cases} \frac{a-c}{a}{} & oblate \\ \frac{c-a}{a} & prolate \end{cases} \]
.
Spheroid is oblate if the equatorial radius is larger than the polar radius. It is prolate if the polar radius is larger than the equatorial radius.
Equation taken from "Map Projections-A Working Manual" (Snyder, 1987), p. 13
See http://mathworld.wolfram.com/Flattening.html , https://en.wikipedia.org/wiki/Flattening and https://en.wikipedia.org/wiki/Equatorial_bulge
| equatorialRadiusInm | \( a\ (m)\) Equatorial radius in meters. The degenerate semi-principle axis of the spheroid. |
| polarRadiusInm | \( c\ (m)\) Polar radius in meters. The unique semi-principle axis of the spheroid. |
| T EGXMath::SpheroidOblateness | ( | const T | eccentricity | ) |
Finds the oblateness (flattening), \(f\), of a spheroid with eccentricity \(e\):
\[ f = 1 - \sqrt{1-e^2} \]
.
Equation taken from "Map Projections-A Working Manual" (Snyder, 1987), p. 13
See http://mathworld.wolfram.com/Flattening.html , https://en.wikipedia.org/wiki/Flattening and https://en.wikipedia.org/wiki/Equatorial_bulge
| eccentricity | \( e\ (dimensionless)\) Eccentricity of spheroid. |