|
EGXPhys
|
Functions | |
| template<typename T > | |
| T | EGXMath::SpheroidSurfaceArea (const T equatorialRadiusInm, const T polarRadiusInm) |
| Finds the surface area, \(S_{spheroid}\), in meter squared of a spheroid with equatorial radius \(a\) and polar radius, \(c\). If \(a < c\), the spheroid is prolate, if \(a = c\) it is a sphere and if \(a>c\) the sphere is oblate. \[ S_{spheroid}=\begin{cases} 2\pi a^2 + 2\pi\dfrac{a c^2}{\sqrt{c^2-a^2}}\arcsin \left ( \dfrac{\sqrt{c^2-a^2}}{c} \right ) & a<c\ prolate \\ 2\pi a^2 +\pi \dfrac{a c^2}{\sqrt{a^2-c^2}}\ln \left(\dfrac{1+\dfrac{\sqrt{a^2-c^2}}{a}}{1-\dfrac{\sqrt{a^2-c^2}}{a}}\right )& a>c\ oblate \end{cases} \] . More... | |
| T EGXMath::SpheroidSurfaceArea | ( | const T | equatorialRadiusInm, |
| const T | polarRadiusInm | ||
| ) |
Finds the surface area, \(S_{spheroid}\), in meter squared of a spheroid with equatorial radius \(a\) and polar radius, \(c\). If \(a < c\), the spheroid is prolate, if \(a = c\) it is a sphere and if \(a>c\) the sphere is oblate.
\[ S_{spheroid}=\begin{cases} 2\pi a^2 + 2\pi\dfrac{a c^2}{\sqrt{c^2-a^2}}\arcsin \left ( \dfrac{\sqrt{c^2-a^2}}{c} \right ) & a<c\ prolate \\ 2\pi a^2 +\pi \dfrac{a c^2}{\sqrt{a^2-c^2}}\ln \left(\dfrac{1+\dfrac{\sqrt{a^2-c^2}}{a}}{1-\dfrac{\sqrt{a^2-c^2}}{a}}\right )& a>c\ oblate \end{cases} \]
.
See http://mathworld.wolfram.com/Ellipse.html
| equatorialRadiusInm | \( a\ (m)\) Equatorial radius in meters. The degenerate semi-principle axis of the spheroid. |
| polarRadiusInm | \( c\ (m)\) Polar radius in meters. The unique semi-principle axis of the spheroid. |