EGXPhys

Functions

template<typename T >
EGXMath::SpheroidSurfaceArea (const T equatorialRadiusInm, const T polarRadiusInm)
 Finds the surface area, \(S_{spheroid}\), in meter squared of a spheroid with equatorial radius \(a\) and polar radius, \(c\). If \(a < c\), the spheroid is prolate, if \(a = c\) it is a sphere and if \(a>c\) the sphere is oblate.

\[ S_{spheroid}=\begin{cases} 2\pi a^2 + 2\pi\dfrac{a c^2}{\sqrt{c^2-a^2}}\arcsin \left ( \dfrac{\sqrt{c^2-a^2}}{c} \right ) & a<c\ prolate \\ 2\pi a^2 +\pi \dfrac{a c^2}{\sqrt{a^2-c^2}}\ln \left(\dfrac{1+\dfrac{\sqrt{a^2-c^2}}{a}}{1-\dfrac{\sqrt{a^2-c^2}}{a}}\right )& a>c\ oblate \end{cases} \]

. More...

 

Detailed Description

Function Documentation

◆ SpheroidSurfaceArea()

template<typename T >
T EGXMath::SpheroidSurfaceArea ( const T  equatorialRadiusInm,
const T  polarRadiusInm 
)

Finds the surface area, \(S_{spheroid}\), in meter squared of a spheroid with equatorial radius \(a\) and polar radius, \(c\). If \(a < c\), the spheroid is prolate, if \(a = c\) it is a sphere and if \(a>c\) the sphere is oblate.

\[ S_{spheroid}=\begin{cases} 2\pi a^2 + 2\pi\dfrac{a c^2}{\sqrt{c^2-a^2}}\arcsin \left ( \dfrac{\sqrt{c^2-a^2}}{c} \right ) & a<c\ prolate \\ 2\pi a^2 +\pi \dfrac{a c^2}{\sqrt{a^2-c^2}}\ln \left(\dfrac{1+\dfrac{\sqrt{a^2-c^2}}{a}}{1-\dfrac{\sqrt{a^2-c^2}}{a}}\right )& a>c\ oblate \end{cases} \]

.

See http://mathworld.wolfram.com/Ellipse.html

Parameters
equatorialRadiusInm\( a\ (m)\) Equatorial radius in meters. The degenerate semi-principle axis of the spheroid.
polarRadiusInm\( c\ (m)\) Polar radius in meters. The unique semi-principle axis of the spheroid.
Returns
\( S_{spheroid}\ (m^2)\) Surface area of spheroid in meter squared.
See also
SpheroidEccentricity() for eccentricity of a spheroid.
SpheroidEquatorialRadius() for equatorial radius of a spheroid.
SpheroidFlattening() for flattening of a spheroid.
SpheroidInertia() for inertia tensor of a spheroid.
SpheroidPolarRadius() for polar radius of a spheroid.
SpheroidVolume() for volume of a spheroid.