|
EGXPhys
|
Functions | |
| template<typename T > | |
| T | EGXMath::SpheroidEccentricity (const T flattening) |
| Finds the eccentricity, \(e\), of a spheroid from flattening, \(f\): \[ e = \sqrt{f (2 - f)} \] . More... | |
| template<typename T > | |
| T | EGXMath::SpheroidEccentricity (const T equatorialRadiusInm, const T polarRadiusInm) |
| Finds the eccentricity, \(e\), of a spheroid with equatorial radius \(a\) and polar radius, \(c\): \[ f =\begin{cases} \sqrt{\frac{a^2-c^2}{a^2}} & oblate \\ \sqrt{\frac{c^2-a^2}{a^2}} & prolate \end{cases} \] . More... | |
| T EGXMath::SpheroidEccentricity | ( | const T | flattening | ) |
Finds the eccentricity, \(e\), of a spheroid from flattening, \(f\):
\[ e = \sqrt{f (2 - f)} \]
.
Equation taken from "Map Projections-A Working Manual" (Snyder, 1987), p. 13
See https://en.wikipedia.org/wiki/Eccentricity_(mathematics) , http://mathworld.wolfram.com/Eccentricity.html, http://mathworld.wolfram.com/Flattening.html
| flattening | \( f\ (dimensionless)\) Flattening of spheroid. |
| T EGXMath::SpheroidEccentricity | ( | const T | equatorialRadiusInm, |
| const T | polarRadiusInm | ||
| ) |
Finds the eccentricity, \(e\), of a spheroid with equatorial radius \(a\) and polar radius, \(c\):
\[ f =\begin{cases} \sqrt{\frac{a^2-c^2}{a^2}} & oblate \\ \sqrt{\frac{c^2-a^2}{a^2}} & prolate \end{cases} \]
.
Spheroid is oblate if the equatorial radius is larger than the polar radius. It is prolate if the polar radius is larger than the equatorial radius.
Equation taken from "Map Projections-A Working Manual" (Snyder, 1987), p. 13
See https://en.wikipedia.org/wiki/Eccentricity_(mathematics) , http://mathworld.wolfram.com/Eccentricity.html, http://mathworld.wolfram.com/Flattening.html
| equatorialRadiusInm | \( a\ (m)\) Equatorial radius in meters. The degenerate semi-principle axis of the spheroid. |
| polarRadiusInm | \( c\ (m)\) Polar radius in meters. The unique semi-principle axis of the spheroid. |