|
EGXPhys
|
Functions | |
| template<typename T , typename T2 > | |
| void | EGXMath::SpheroidInertia (const T mass, const T equatorialRadiusInm, const T polarRadiusInm, T2(&matrix)[9]) |
| Finds the moment of inertia tensor, \(I_{spheroid}\) of a spheroid with equatorial radius \(a\) and polar radius, \(c\). It is assumed that \(a\) lays on the xy-plane, and \(c\) on the z-axis. \[ I_{spheroid}=\begin{bmatrix} \frac{1}{5}m\ a^2c^2 & 0 & 0\\ 0 & \frac{1}{5}m\ a^2c^2 & 0\\ 0 & 0 & \frac{2}{5}m\ a^2 \end{bmatrix} \] See https://en.wikipedia.org/wiki/List_of_moments_of_inertia and http://scienceworld.wolfram.com/physics/MomentofInertiaEllipsoid.html. More... | |
| template<typename T , typename T2 > | |
| void | EGXMath::SpheroidInertia (const T mass, const T equatorialRadiusInm, const T polarRadiusInm, std::vector< T2 > &matrix) |
| Finds the moment of inertia tensor, \(I_{spheroid}\) of a spheroid with equatorial radius \(a\) and polar radius, \(c\). It is assumed that \(a\) lays on the xy-plane, and \(c\) on the z-axis. \[ I_{spheroid}=\begin{bmatrix} \frac{1}{5}m\ a^2c^2 & 0 & 0\\ 0 & \frac{1}{5}m\ a^2c^2 & 0\\ 0 & 0 & \frac{2}{5}m\ a^2 \end{bmatrix} \] See https://en.wikipedia.org/wiki/List_of_moments_of_inertia and http://scienceworld.wolfram.com/physics/MomentofInertiaEllipsoid.html. More... | |
| template<typename T > | |
| void | EGXMath::SpheroidInertia (const T mass, const T equatorialRadiusInm, const T polarRadiusInm, glm::mat3 &matrix) |
| Finds the moment of inertia tensor, \(I_{spheroid}\) of a spheroid with equatorial radius \(a\) and polar radius, \(c\). It is assumed that \(a\) lays on the xy-plane, and \(c\) on the z-axis. \[ I_{spheroid}=\begin{bmatrix} \frac{1}{5}m\ a^2c^2 & 0 & 0\\ 0 & \frac{1}{5}m\ a^2c^2 & 0\\ 0 & 0 & \frac{2}{5}m\ a^2 \end{bmatrix} \] See https://en.wikipedia.org/wiki/List_of_moments_of_inertia and http://scienceworld.wolfram.com/physics/MomentofInertiaEllipsoid.html. More... | |
| void EGXMath::SpheroidInertia | ( | const T | mass, |
| const T | equatorialRadiusInm, | ||
| const T | polarRadiusInm, | ||
| T2(&) | matrix[9] | ||
| ) |
Finds the moment of inertia tensor, \(I_{spheroid}\) of a spheroid with equatorial radius \(a\) and polar radius, \(c\). It is assumed that \(a\) lays on the xy-plane, and \(c\) on the z-axis.
\[ I_{spheroid}=\begin{bmatrix} \frac{1}{5}m\ a^2c^2 & 0 & 0\\ 0 & \frac{1}{5}m\ a^2c^2 & 0\\ 0 & 0 & \frac{2}{5}m\ a^2 \end{bmatrix} \]
See https://en.wikipedia.org/wiki/List_of_moments_of_inertia and http://scienceworld.wolfram.com/physics/MomentofInertiaEllipsoid.html.
| mass | \( m\ (kg)\) Mass of the ellipsoid. |
| equatorialRadiusInm | \( a\ (m)\) Equatorial radius in meters. The degenerate semi-principle axis of the spheroid. |
| polarRadiusInm | \( c\ (m)\) Polar radius in meters. The unique semi-principle axis of the spheroid. |
| matrix | \( I_{spheroid}\ (kg\ m^2)\) Moment of inertia tensor matrix of the spheroid. |
| void EGXMath::SpheroidInertia | ( | const T | mass, |
| const T | equatorialRadiusInm, | ||
| const T | polarRadiusInm, | ||
| std::vector< T2 > & | matrix | ||
| ) |
Finds the moment of inertia tensor, \(I_{spheroid}\) of a spheroid with equatorial radius \(a\) and polar radius, \(c\). It is assumed that \(a\) lays on the xy-plane, and \(c\) on the z-axis.
\[ I_{spheroid}=\begin{bmatrix} \frac{1}{5}m\ a^2c^2 & 0 & 0\\ 0 & \frac{1}{5}m\ a^2c^2 & 0\\ 0 & 0 & \frac{2}{5}m\ a^2 \end{bmatrix} \]
See https://en.wikipedia.org/wiki/List_of_moments_of_inertia and http://scienceworld.wolfram.com/physics/MomentofInertiaEllipsoid.html.
| mass | \( m\ (kg)\) Mass of the ellipsoid. |
| equatorialRadiusInm | \( a\ (m)\) Equatorial radius in meters. The degenerate semi-principle axis of the spheroid. |
| polarRadiusInm | \( c\ (m)\) Polar radius in meters. The unique semi-principle axis of the spheroid. |
| matrix | \( I_{spheroid}\ (kg\ m^2)\) Moment of inertia tensor matrix of the spheroid. |
| void EGXMath::SpheroidInertia | ( | const T | mass, |
| const T | equatorialRadiusInm, | ||
| const T | polarRadiusInm, | ||
| glm::mat3 & | matrix | ||
| ) |
Finds the moment of inertia tensor, \(I_{spheroid}\) of a spheroid with equatorial radius \(a\) and polar radius, \(c\). It is assumed that \(a\) lays on the xy-plane, and \(c\) on the z-axis.
\[ I_{spheroid}=\begin{bmatrix} \frac{1}{5}m\ a^2c^2 & 0 & 0\\ 0 & \frac{1}{5}m\ a^2c^2 & 0\\ 0 & 0 & \frac{2}{5}m\ a^2 \end{bmatrix} \]
See https://en.wikipedia.org/wiki/List_of_moments_of_inertia and http://scienceworld.wolfram.com/physics/MomentofInertiaEllipsoid.html.
| mass | \( m\ (kg)\) Mass of the ellipsoid. |
| equatorialRadiusInm | \( a\ (m)\) Equatorial radius in meters. The degenerate semi-principle axis of the spheroid. |
| polarRadiusInm | \( c\ (m)\) Polar radius in meters. The unique semi-principle axis of the spheroid. |
| matrix | \( I_{spheroid}\ (kg\ m^2)\) Moment of inertia tensor matrix of the spheroid. |